UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

COMPLEMENTARY PROBLEMS OF PHYSICAL CHEMISTRY

2018-19

LESSON 1

Calculate ΔU when 1 mole of argon is heated from 25 °C to 125 °C and its volume changes from 5 dm³ to 6.35 dm³. Consider ideal gas behaviour
Data: R = 0.082 1·atm·K⁻¹·mol⁻¹ = 1.987 cal·K⁻¹·mol⁻¹ = 8.314 J·K⁻¹·mol⁻¹

Data: $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $C_V = 12,472 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Solution: $\Delta U = 1247.20 \text{ J}$

- **2.** One mole of a monoatomic ideal gas undergoes the next cycle comprising steps A, B and C and involving the states 1, 2 and 3. Fill a table with:
 - a) P, V and T for each state.

b) W, Q, ΔU and ΔH for each step and for the cycle.

 $\textbf{Data} \colon \ \ R = 0.082 \ l \cdot atm \cdot \text{K}^{-1} \cdot mol^{-1} = 1.987 \ cal \cdot \text{K}^{-1} \cdot mol^{-1} = 8.314 \ J \cdot \text{K}^{-1} \cdot mol^{-1}$

$$V_1 = 22.4 \ l \cdot mol^{-1}, T_1 = 273 \ K$$

$$V_2=22.4 \text{ l} \cdot \text{mol}^{-1}, T_2=546 \text{ K}$$

$$V_3 = 44.8 \text{ l} \cdot \text{mol}^{-1}, T_3 = 546 \text{ K}$$

Solution: a)

State	P / (atm)	V (l/mol ⁻¹)	T / (K)
1	0.9993	22.4	273
2	1.9987	22.4	546
3	0.9993	44.8	546

b)

Step	Type	W / (cal)	q / (cal)	ΔU / (cal)	ΔH / (cal)
Α	Isochoric	0	813.68	813.68	1356.13
В	Isothermal	-751.99	751.99	0	0
C	Isobaric	542.79	-1,356.12	-813.68	-1,356.13
Cycle		-209.20	209.20	0	0

3. Two moles of an ideal gas 25 ° C undergo a reversible isothermal expansion from an initial volume of 3 to a final one of 10 l. Determine Q, W, ΔU , ΔH and ΔS .

Data:
$$R = 0.082 \text{ 1} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$
 $\overline{C}_P = 5R / 2$

Solution: Q = 1424.65 cal w = -1424.65 cal;
$$\Delta U = 0$$
, $\Delta H = 0$, $\Delta S = 4.780$ cal · K⁻¹

4. Calculate ΔU , ΔH and ΔS when one mole of liquid water at 25 ° C and 1 atm is transformed in one mole of steam at 100 ° C and 1 atm.

$$\begin{split} \textbf{Data:} \ R = & \ 0.082 \ l \cdot atm \cdot K^{-1} \cdot mol^{-1} = 1.987 \ cal \cdot K^{-1} \cdot mol^{-1} = 8.314 \ J \cdot K^{-1} \cdot mol^{-1} \\ \overline{\Delta H}_{V} \ (H_{2}O, \ 373 \ K) = & \ 40.79 \ kJ \cdot mol^{-1}; \ \overline{C}_{p} \ (H_{2}O) = 75.30 \ J \cdot K^{-1} \cdot mol^{-1}; \\ \rho \ (H_{2}O_{(l)}, \ 298 \ K) = & \ 0.9998 \ g \cdot cm^{-3}; \ \rho \ (H_{2}O_{(l)}, \ 373 \ K) = 0.958 \ g \ cm^{-3}; \\ \rho \ (H_{2}O_{(v)}, \ 373 \ K) = & \ 5.98 \cdot 10^{-4} \ g \cdot cm^{-3} \end{split}$$

Consider that the molar heat capacity is independent of temperature

Solution:
$$\Delta U = 43387.4 \text{ J.}$$
; $\Delta H = 46437.5 \text{ J}$; $\Delta S = 126.26 \text{ J} \cdot \text{K}^{-1}$

- **5.** Calculate for the isobaric transformation of 10 kg of water at 20 ° C and 1 atm to steam at 250 ° C:
 - a) ΔS of the system.
 - **b**) Indicate if these data are enough to know the spontaneity of the process.
 - **c**) What are the differences if the transformation takes place at 100 ° C and 1 atm? Why?

Data: Cp (H₂O, l) = 4,189 J · kg⁻¹ · K⁻¹;
Cp (H₂O, v) = 1.670 +0.49 T +1.86 · 10⁶T ⁻² (J · kg⁻¹ · K⁻¹)
$$\Delta$$
Hv = 730.8 J · kg⁻¹

Solution: ΔS sist = 803.19 J K-1; **b**) they are not, ΔG is needed; **c**) just reversible vaporization would occur.